Week 5: Midterm Review!

MATH 4A
TA: Jerry Luo
jerryluo8@math.ucsb.edu
Website: math.ucsb.edu/~jerryluo8
Office Hours: Monday 9:30-10:30AM, South Hall 6431X
Math Lab hours: Monday 3-5PM, South Hall 1607
Disclaimer: Since I am not the one writing the exam, I cannot guarantee this practice "exam" will look anything like the midterm. However, I reckon if you can do these without trouble, you're probably quite fine for the midterm.

Definitions: Here's a list of definitions that you should definitely know. Note that this list may not be comprehensive!

- A systems of equations is consistent when...?

There is a solution. This means that some solution exists, although there may be more than one.

- A matrix is in RREF when...

There is a pivot in every row, and the entries above the pivots are all 0.

- A matrix is invertible when...

A matrix A is invertible if there's another matrix B such that $A B=B A=I$, where I is the identity matrix. Note that in this case, A must be a square.

- Consider the set of vectors $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ in \mathbb{R}^{m}. Define the span of these vectors. The set of linear combinations of $\left\{v_{1}, \cdots, v_{n}\right\}$. In other words, all such vectors of the form $c_{1} v_{1}+\cdots+c_{n} v_{n}$, where c_{1}, \cdots, c_{n} are all scalars.
- Consider the set of vectors $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ in \mathbb{R}^{m}. We say $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is linearly independent when...
If $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=0$, it's necessarily the case that $c_{1}=c_{2}=\cdots=c_{n}=0$.
- What does it mean for $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ to be a linear transformation?

For all vectors v_{1}, v_{2}, and scalars c, we have $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)$ and $T\left(c v_{1}\right)=$ $c T\left(v_{1}\right)$.

- Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. We say T is one-to-one when... Additionally, if T is one-to-one, what can we say about m in relation to n ?
For any v_{1} and v_{2} in \mathbb{R}^{n}, if $T\left(v_{1}\right)=T\left(v_{2}\right)$, we must have $v_{1}=v_{2}$. In other words, different inputs get sent to different outputs. If T is one-to-one, we must have $n \leq m$.
- Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. We say T is onto when... Additionally, if T is onto, what can we say about m in relation to n ?
For every y in \mathbb{R}^{m} (the codomain), there's some x in \mathbb{R}^{n} (the domain) where $T(x)=y$. In this case, $n \geq m$.
- What is a basis of a vectors space?

A linearly independent set that spans the vector space.

- What is the dimension of a vector space?

The dimension of a basis of the vector space.

- What is the nullity of a matrix? What is the null space (kernel)?

Given a matrix A, the null space (kernel) of A consists of v such that $A v=0$. This forms a vector space, the dimension of which is the nullity.

- What is the rank of a matrix? What is the column space (image)?

Given a matrix A, the column space (image) of A consists of the outputs of A (ie. anything of the form $A v$, for v in the domain). Alternatively, this is the span of the columns of A. This again, forms a vector space, the dimension of which is the rank.

3-2.3 Find a set of vectors $\{u, v\}$ in \mathbb{R}^{4} that spans the solution set of

$$
\left\{\begin{array}{r}
w-x+y-2 z=0 \\
3 w+2 x-y+z=0
\end{array}\right.
$$

Solution: If try to solve for this systems of equation, the augmented matrix corresponding to this system is
$\left[\begin{array}{cccc|c}1 & -1 & 1 & -2 & 0 \\ 3 & 2 & -1 & 1 & 0\end{array}\right]$.
After row reducing into RREF, we get
$\left[\begin{array}{cccc|c}1 & 0 & 1 / 5 & -3 / 5 & 0 \\ 0 & 1 & -4 / 5 & 7 / 5 & 0\end{array}\right]$.
This corresponds to the equations

$$
w+\frac{1}{5} y-\frac{3}{5} z=0
$$

and

$$
x-\frac{4}{5} y+\frac{7}{5} z=0 .
$$

So, if we have a solution $\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right]$, then from the w, x, y, z are constrained by the above equations. So, we can put w and x in terms of y and z, and get

$$
\left[\begin{array}{c}
-\frac{1}{5} y+\frac{3}{5} z \\
\frac{4}{5} y-\frac{7}{5} z \\
y \\
z
\end{array}\right]
$$

This can be written

$$
\left[\begin{array}{c}
-\frac{1}{5} \\
\frac{4}{5} \\
1 \\
0
\end{array}\right] y+\left[\begin{array}{c}
\frac{3}{5} \\
\frac{7}{5} \\
0 \\
1
\end{array}\right] z,
$$

in which case, we have $u=\left[\begin{array}{c}-\frac{1}{5} \\ \frac{4}{5} \\ 1 \\ 0\end{array}\right]$ and $v=\left[\begin{array}{c}\frac{3}{5} \\ \frac{7}{5} \\ 0 \\ 1\end{array}\right]$.

3-2.9 A $=\left[\begin{array}{ccc}-3 & 9 & -9 \\ -4 & 14 & -14 \\ 1 & -1 & 1\end{array}\right]$. Is it true that $A x=b$ has a solution for every b ?
Solution: Note that this is asking if A is onto.
If it's onto, then row reducing into RREF should yield a pivot in every row. However, $\left[\begin{array}{ccc}-3 & 9 & -9 \\ -4 & 14 & -14 \\ 1 & -1 & 1\end{array}\right]$ row reduces to $\left[\begin{array}{ccc}-3 & 9 & -9 \\ 0 & 2 & -2 \\ 0 & 0 & 0\end{array}\right]$. If we continue row reducing, it is clear that we will not get any nonzero entries in the third column, in which case, the third column does not have a pivot. So, A is not onto.

4-1.5 Let $v=\left[\begin{array}{l}-4 \\ -6 \\ -8\end{array}\right], u=\left[\begin{array}{c}-3 \\ -3 \\ 8+k\end{array}\right]$, and $w=\left[\begin{array}{c}-4 \\ -1 \\ 2\end{array}\right]$. The set $\{v, u, w\}$ is linearly independent unless $k=$?
Let $v=\left[\begin{array}{l}-4 \\ -6 \\ -8\end{array}\right], u=\left[\begin{array}{c}-3 \\ -3 \\ 8+k\end{array}\right]$, and $w=\left[\begin{array}{c}-4 \\ -1 \\ 2\end{array}\right]$. The set $\{v, u, w\}$ is linearly independent unless $k=$?

Solution:

$\{v, u, w\}$ is linearly independent if the following condition is met: $c_{1} v+c_{2} u+c_{3} w=\overrightarrow{0}$ if and only if $c_{1}=c_{2}=c_{3}=0$.
Note that $\{v, w\}$ (ie. without u) is linearly independent, since v is not a multiple of w. So, in order to make this set linearly dependent, we must find $c_{1} v+c_{2} w=u$. In other words, the following system must be consistent:

$$
c_{1}\left[\begin{array}{l}
-4 \\
-6 \\
-8
\end{array}\right]+c_{2}\left[\begin{array}{c}
-4 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-3 \\
8+k
\end{array}\right]
$$

The augmented matrix corresponding to this system is

$$
\left[\begin{array}{cc|c}
-4 & -4 & -3 \\
-6 & -1 & -3 \\
-8 & 2 & 8+k
\end{array}\right]
$$

Reducing this into RREF, we get

$$
\left[\begin{array}{cc|c}
1 & 0 & 3 / 4 \\
0 & 1 & 3 / 10 \\
0 & 0 & k+11
\end{array}\right]
$$

The last equation corresponds to $k+11$, so $k=-11$ is what we need for this system to be consistent, in which case, $\{v, u, w\}$ linearly dependent. In other words, for $\{v, u, w\}$ to be linearly independent, we need $k \neq-11$.

4-2.5 Let $v_{1}=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. Suppose $T\left(v_{1}\right)=\left[\begin{array}{c}-12 \\ 8\end{array}\right]$ and $T\left(v_{2}\right)=\left[\begin{array}{c}19 \\ -9\end{array}\right]$. For an arbitrary vector $v=\left[\begin{array}{l}x \\ y\end{array}\right]$, find $T(v)$.
Solution: If we could find c_{1} and c_{2} such that $c_{1} v_{1}+c_{2} v_{2}=v$, then we would be done, since $T(v)=T\left(c_{1} v_{1}+c_{2} v_{2}\right)=T\left(c_{1} v_{1}\right)+T\left(c_{2} v_{2}\right)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)$.
So, let's find c_{1} and c_{2} such that

$$
c_{1}\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

We note that this is a systems of equations, with the corresponding augmented matrix $\left[\begin{array}{ll|l}-1 & 1 & x \\ -2 & 3 & y\end{array}\right]$.
Row reducing this to RREF yields $\left[\begin{array}{ccc}1 & 0 & -3 x+y \\ 0 & 1 & -2 x+y\end{array}\right]$. This tells us $c_{1}=-3 x+y$ and $c_{2}=-2 x+y$.
Thus, we see $T(v)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)=(-3 x+y)\left[\begin{array}{c}12 \\ 8\end{array}\right]+(-2 x+y)\left[\begin{array}{c}19 \\ -9\end{array}\right]=$ $\left[\begin{array}{c}-2 x+7 y \\ -6 x-y\end{array}\right]$.

5-2.12 Let $A=\left[\begin{array}{ccc}-1 & -3 & -2 \\ 1 & 3 & 2 \\ -2 & -6 & -4\end{array}\right]$. Find a basis for the null space (kernel) of A.
Solution: This is the set of $v=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ such that $A v=0$.
We note that if $A v=\overrightarrow{0}$, then we have

$$
\left[\begin{array}{ccc}
-1 & -3 & -2 \\
1 & 3 & 2 \\
-2 & -6 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-x-3 y-2 z \\
x+3 y+2 z \\
-2 x-6 y-4 z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We note that what we have above is a systems of equations, and we are trying to solve for x, y, z. The augmented matrix corresponding to this system is

$$
\left[\begin{array}{ccc|c}
-1 & -3 & -2 & 0 \\
1 & 3 & 2 & 0 \\
-2 & -6 & -4 & 0
\end{array}\right]
$$

which row reduces to

$$
\left[\begin{array}{lll|l}
1 & 3 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This corresponds to $x+3 y+2 z=0$, so if $v=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ was any solution, we must have $x=-3 y-2 z$, so $v=\left[\begin{array}{c}-3 y-2 z \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right] y+\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right] z$. Since y and z were free variables, we see that they are "unconstrained" (ie. they can be any number). In other words, any solution would be of the form $\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right] y+\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right] z$, where y and z are scalars. So, we see that $\left\{\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]\right\}$ forms a basis.

